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A METHOD OF CALCULATING 

WIND TUNNEL INTERFERENCE FACTORS 

FOR TUNNELS OF ARBITRARY CROSS-SECTION 

By Robert G. Joppa 

SUMMARY 

A new method of.calculating the wind tunnel wall induced in- 

terference factors has been developed. The tunnel walls are rep- 

resented by a vortex lattice of strength sufficient to satisfy 

the boundary conditions at the wall. The vortex lattice is then 

used to calculate the interference velocities at any point in the 

wind tunnel. The resulting interference factors agree with the 

classical results that are available for square and circular tun- 

nels. Calculations are also presented for a rectangular tunnel, 

and they can be made to closely approximate a tunnel of any cross- 

section. 

INTRODUCTION 

Current interest in V/STOL aircraft has resulted in a renewed 

interest in the problems of the wind tunnel measurement of their 

characteristics. Among the problems of critical importance is that 

of calculating the interference velocities due to the presence of 

the tunnel walls, particularly the longitudinal distribution of the 



interference because of its large effect on the measured pitching 

moment. Classical methods of computing these interference veloci- 

ties are inadequate for V/STOL models that characteristically' 

produce large downwash, and so a new method is required to handle 

this case. In this report a new method of representing the tunnel 

walls is developed which should be applicable to the large down- 

wash case, and it is tested by being applied to the limiting case 

of small downwash in order to compare results with classical theory. 

The classical solutions have depended upon the assumption of 

a proper set of images outside the tunnel, of the vortex flow 

inside the tunnel, such that the walls become streamlines. Unfor- 

tunately, no proper image system has been found for any tunnel 

except the rectangular cross-sections. Prandti (Ref. 1) has pre- 

sented a solution for the circular wind tunnel with an undeflected 

wake which gives correct values of upwash at the wing. Glauert 

(Ref. 2) has solved the rectangular wind tunnel problem, including 

the effects downstream, i.e., at the tail location. Others (Refs. 3 

to 9) have extended it to include other tunnel shapes. Lot2 

(Ref. 10) has offered a solution for the upwash interference for 

circular and elliptical tunnels which will yield results at down- 

stream locations as well as at the wing. In Lotz's solution, an 

image system is used which is valid at the wing and far downstream, 

and an additional potential function is assumed in infinite series 

form which is required to cancel the remaining normal velocities 



at the wall, also expressed in series form. To the degree that 

these series do not completely converge before being truncated, 

this solution is an approximation. 

The object of this work is to present an alternate method of 

representing the tunnel walls which would be applicable to a tun- 

nel of any arbitrary cross-section and which could be extended to 

handle the large downwash case. It is hypothesized that the tunnel 

walls might be represented by a network of vortex lines whose mag- 

.nitude and direction are just sufficient to prevent flow through 

a set of control points'on the walls. The approach is similar to 

that of approximate lifting surface theory. 

This paper presents the mathematical development of the theory. 

The results of sample calculations for the interference factors 

and the distribution of interference over the longitudinal and 

lateral axes are presented for uniformly loaded wings of various 

spans in a variety of wind tunnels. The wind tunnel configurations 

include square, rectangular and circular cross-sections. These 

results are then compared, where possible, with prior work which 

have obtained corresponding values by other theoretical treatments. 

SYMBOLS 

b 
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cL 

Wing vortex span 

Wind tunnel cross-section area 

Wing lift coefficient 
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v Velocity induced at a point 
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Normal distance to a point p from a line containing a 
vortex segment identified by subscript 

Normal distance to a point p from a plane containing 
vortex segments identified by subscript 

Height of wind tunnel 

Unit vectors in the directions X, Y, Z 

Dimensions of rectangular vortex ring (Fig. 3) 

Unit vector normal to vortex ring 

Vector from point (X,Y,Z) to end of a vortex vector s 
indicated by subscript 

Magnitud‘e of component of vector R 
( 1 

indicated by 
second subscript 

Wing area 

Vector representing a vortex segment of strength r and 
length S 

component of s indicated by subscript 

Unit vector in the direction of the total velocity 
vector at a point 

Vertical component of wall-induced interference velocity 

Width of wind tunnel 

Vector representing a wing bound vortex of strength rw 

Cartesian coordinate of a point (see Fig. 1) 

Angles defining direction to a point from the end of a 
vortex segment (Fig. 2) 

Circulation strength of a vortex 

Tunnel-wall-induced interference factor 
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STATEMENT 6F PROBLEM 

The problem is to find that distribution of VOrtiCity lying 

in the tunnel walls which will prevent any flow through the wall 

due to the action of a lifting system in the wind tunnel. The 

lifting surface is assumed to be uniformly loaded and is re??re- 

sented by a simple horseshoe vortex with.the trailing Pair un- 

deflected. In principle, any desired distribution of lift could 

be built up of such simple elements. 

The walls are represented by a tubular vortex sheet of finite 

length composed of a network of circumferential and longitudinal 

vortices having equal spacing (Fig. 1). Helmholtz' theorem that a 

vortex filament can neither end nor begin in the flow is satisfied 

most readily by constructing the network of square vortex rings 

lying wholly within the plane of the walls. Each such square has 

a vortex strength lYi, and each side is coincident with the side of 

the neighboring square. Thus, the strength of any segment is the 

sum of the strengths of the two adjoining squares. The boundary 

condition that the wall must be impervious to flow is satisfied at 

a control point in the center of each square. This results in a 

set of simultaneous equations, one written for each control point, 

in which the unknowns are the lYi. 

A large number of equations results if the tube is very long, 

thus some judgment is required in choosing the geometric arrange- 

ment. The use of square vortex rings requires a tunnel of constant 

cross-section. One notes that for a wing mounted in the center 
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of the tunnel,, lateral symmetry always exists: and if the wake is 

undeflected, vertical symmetry also exists, thus reducing the 

number of unknowns. The trailing edge of the finite length tube 

which represents the long tunnel requires a slightly different 

treatment. At a far downstream section only longitudinal vorticity 

should exist. This is represented by elongating the last ring of 

squares by a large amount, while keeping the control point at the 

same location with respect to the last circumferential station. 

Figure 1 shows the arrangement for a rectangular tunnel with 

filleted corners. 

SETUP OF THE EQUATIONS 

A right-hand axis system is established with the X-axis on the 

longitudinal centerline of the tunnel, positive downstream. The 

Y-axis is taken positive upward and the Z-axis positive to the 

right side of the tube facing downstream. 

Since the surface of the tunnel is to be made of square ele- 

ments, its cross-section is a polygon of equal segments arranged 

to approximate any desired shape. In this development the cross- 

section will be assumed to be symmetrical about the X,Y plane. 

In general, the velocity induced at any point p (Fig. 2) due 

to a vortex segment may be written: 

v=r 
4rrh (cos P 1 + cos 8,) v (1) 
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The terms required are written as follows: 

cos Bl + cos 8, = - (Rl-R2) 
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Finally, the velocity induced at a point due to a vortex segment 

is: 
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One could then add the contributions of all four sides of a vortex square, 
but it 

is more convenient to take advantage of the lateral symmetry and sum the effects due 

to a pair of symmetrically located vortex squares of the same strength. The arrange- 
ment is shown in Figure 3 and the following equation results: 
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Similarly, the velocity induced at point p by a simple horse- 

shoe vortex located in the center of the tunnel is derived from 

Figure 4 using eq. (1). Summing the contributions from the three 

segments yields: 

v -_ Rw1+Rw2 b2 - (~w~-%~)~ s 
I 

’ 
rw/8nb - 1 1 (4) 

Y 

+ 
2 b' I- 2 
h2 

2b a- 
s2z h; 

+ Rw1+%J2 [b2 - (~~-s~)~ s r\ 1 
2b -- 

%'y h; 

The boundary condition is expressed at each control point by 

writing v.n = 0 where 6 is the unit outer normal to the surface 

at that point. 

- - 

EC 
i x (R~-R~) 

II x (Ii,-Ii,)1 
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Thus there is a set of N equations, one for each control point. 

Because of the right and left symmetry and vertical symmetry, there 

are N/4 unknown lYi. An electronic computer is used to solve the 

matrix for the I?.. 1 
Once the Ti are known, the induced velocity due to the walls 

can be calculated at any point in the tunnel by the use of eq. (3) 

summed over all the vortex rings in the tunnel walls. The inter- 

ference is expressed as an angle whose tangent is the vertical 

component of interference velocity divided by the tunnel wind speed. 

Results are expressed in terms of the classical interference fac- 

tor 6, defined by the equation: 

The factor is computed in terms of wing circulation and vortex 

span 

Results are presented graphically to show the longitudinal varia- 

tion of the factor 6 for different wing spans in a variety of 

tunnels. 
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RESULTS OF CALCULATIONS 

Results of calculations made for three representative tunnel 

shapes are presented in the form of graphs of the wall interference 

factor 6. Values of 6 were calculated at points along the tunnel 

centerline from the wing location downstream for several values of 

wing vortex span. These are presented for a circular, a square, 

and a 3:5 rectangular tunnel in Figures 5, 6, and 7. The average 

value of this interference factor over the vortex span of the 

uniformly loaded wing was also calculated and is shown as a function 

of vortex span for each of these tunnels along with the centerline 

values in Figure 8. 

COMPARISON OF RESULTS WITH CLASSICAL WORK 

Square Tunnel 

Very little previous work exists which can be used for a 

check on the accuracy or convergence of the present method. 

Prandtl's concept of an infinite array of images of the wing 

located outside the tunnel is applicable only to rectangular 

(including square) tunnels and has been applied by Silverstein & 

White in Reference 9. Results are presented there for square and 

2:l rectangular tunnels: only the square tunnel results are used 

for comparison, since 2;l tunnels are not common. 

The number of line segments, each corresponding to the side 

of a vortex square, to be used to adequately represent the square 



tunnel cross-section was determined by making a series of calcu- 

lations with Increasing numbers of segments. Figure 9 shows the 

results of using 12, 16, and 20 segments to make up the periphery 

of the square cross-section. The results for 1.6 and 20 segments 

differ only slightly and correspond very closely to the data taken 

from,Reference 9. The excellent agreement shown indicates that 16 

segments are enough to represent satisfactorily the square cross- 

section tunnel. 

Circular Tunnel 

In the case of the circular tunnel, no exact solution is avall- 

able for the downstream interference factors, so two approximate 

results are compared with the new calculations in Figure 10. The 

treatment presented by Lotz (Ref. 10) would be exact except that 

the numerical values depend upon the point at which an infinite 

series in truncated. Reference 10 gives. no indication of the 

accuracy expected in its numerical values. The result taken from 

Silverstein & White (Ref. 9) was arrived at by following their 

suggestion that the downstream interference factors for the circular 

tunnel be taken as the same as for the square tunnel of the same 

area. 

Four different approximations to the circular tunnel were 

used for this calculation. Two regular polygons having 12 or 1.6 

sides were used for the cross-section shape; each was rotated so 

that either points or flats of the polygon were at the top and side 

centerline. All four calculations yielded the same curve, with 
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values within one-tenth of one percent. Thus, it is concluded that 

a 12-sided polygon is adequate to represent the circular tunnel. 

Length Effect 

The effect of length of the tunnel to be used in calculations 

was explored for the circular tunnel. A twelve-sided polygon was 

used in the calculation, with the model vortex span equal to 0.4 of 

the tunnel diameter. It is evident from Figure 11 that a length-to- 

diameter ratio of 3 or 4 is ample for convergence. The reason for 

this may be seen in an examination of the distribution of the wall 

vorticity. The bound vortex of the wing requires some circumferen- 

tial vorticity in the walls, but only in the region quite near to 

the wing. Longitudinal vorticity is not required far upstream, and 

far downstream only longitudinal filaments exist to control the 

trailing pair from the wing. By using the artifice of a very long 

last ring, the proper conditions are met far downstream, and the 

vortex lattice need only be long enough to provide the circumferen- 

tial vorticity needed in the immediate vicinity of the wing. In 

fact, all the vorticity in the circumferential rings is quickly 

transferred to the longitudinal filaments. 

Figure 12 shows the wall vortex strengths taken from calcu- 

lations made for circular tunnels of various lengths. The circum- 

ferential vorticity strengths were taken at the floor near the cen- 

ter of the tunnel where they are the strongest: the longitudinal 

vortex filament strength is that along the side wall at model height. 

It is evident that the details of the distribution are not strongly 
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affected by the presence or absence of tunnel walls more than about 

one diameter up or downstream from the wing. 

CONCLUSIONS 

A new method of calculating the tunnel-induced interference 

velocities has been developed which depends on the representation 

of the walls by a network of square vortex rings. 

The method may be used to represent any tunnel cross-section 

by using an equivalent polygon of equal length sides and having 

the same cross-section area. 

The method yields interference factors that agree with 

classical theory where that is available. 
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FIGURES 

1. Representation of a Rectangular Tunnel with Corner Fillets 
by a Vortex Lattice of Square Vortex Rings Lying in the 
Tunnel Walls. 

2. Velocity Induced at a Point by an Arbitrarily Oriented Vortex 
Segment. 

3. Definition of Angles and Distances for a Pair of Vortex 
Squares Oriented Symmetrically about the X, Y Plane. 

4. Definition of Distances for a Horseshoe Vortex Representing 
a Wing Located with its Midspan at the Origin of Coordinates. 

5. Wall Interference Factors for a Circular Wind Tunnel. 

6. Wall Interference Factors for a Square Wind Tunnel. 

7. Wall Interference Factors for a 3:5 Rectangular Wind Tunnel. 

8. Effect of Wing Span on Average Interference Factor and the 
Centerline Interference Factor at the Wing. 

9. Comparison of Interference Factors with Classical Values 
for a Square Tunnel. 

10. Comparison of Interference Factors with Classical Values 
for a Circular Tunnel. 

11. Effect of Tunnel Length on Interference Factors for a Circular 
Tunnel. 

12. Effect of Tunnel Length on Wall Vorticity Distribution 
for a Circular Tunnel. 
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FIGURE 1 

REPRESENTATION OF A RECTANGULAR TUNNEL WITH CORNER FILLETS 

'. 

BY A VORTEX LATTICE OF SQUARE VORTEX 
RINGS LYING IN THE TUNNEL WALLS 



Y 

T 

v = & (cos B 1 + cos 8,) ;; 

FIGURE 2 

VELOCITY INDUCED AT A POINT BY AN ARBITRARILY ORIENTED VORTEX SEGMENT 

I 

- 



M,C 

N2D 

FIGURE 3 

DEFINITION .OF ANGLES AND DISTANCES FOR A PAIR OF VORTEX SQUARES 

ORIENTED SYMMETRICALLY ABOUT THE X,Y PLANE 

(ELEMENTS A, B, C, & D ARE PARALLEL TO THE X-AXIS) 
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FIGURE 4 

DEFINITION OF DISTANCES FOR A HORSESHOE VORTEX 

REPRESENTING A WING LOCATED WITH ITS MIDSPAN A, m THE ORIGIN OF COORDINATES 



WALL INTERFERENCE FACTORS 

FOR A CIRCULAR WIND TUNNEL 
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23 



WALL INTERFERENCE FACTORS 

FOR A SQUARE WIND TUNNEL 
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WALL INTERFERENCE FACTORS 

FOR A 3:5 RECTANGULAR WIND TUNNEL 
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FIGURE 7 
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EFFECT OF WING SPAN ON AVERAGE INTERFERENCE FACTOR 

AND THE CENTERLINE INTERFERENCE FACTOR AT THE WING 
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FIGURE 8 
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COMPARISON OF INTERFERENCE FACTORS 

WITH CLASSICAL VALUES FOR A SQUARE TUNNEL 
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FIGURE 9 
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COMPARISON OF INTERFERENCE FACTORS 
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EFFECT OF TUNNEL LENGTH ON INTERFERENCE FACTORS 

FOR A CIRCULAR TUNNEL 
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EFFECT OF TUNNEL LENGTH ON WALL VORTICITY DISTRIBUTION 

FOR A CIRCULAR TUNNEL 
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